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Effective Interactions in Dilute Mixtures
of *He in *He
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Nonlocal pseudopotentials which describe the effective interaction between *He
quasiparticles, and between these quasiparticles and the background *He liquid,
are obtained as a function of concentration and pressure by generalizing the
Aldrich—Pines pseudopotentials for pure *He and “He to dilute mixtures. The
hierarchy of physical effects which determine these pseudopotentials is
established. Interaction-induced short-range correlations are the dominant
physical feature; next in order of importance is the greater zero point motion
associated with the replacement of a *He atom by a *He atom, while spin-
induced “Pauli principle” correlations play a significantly smaller, albeit stiil
important role. We find a consistent trend in the change of the effective direct
quasiparticle interactions with increasing concentration, and show how the
Aldrich~Pines pseudopotentials for pure *He quasiparticles represent a natural
extension of our results for dilute mixtures. Our calculated nonlocal
pseudopotential for *He quasiparticles is qualitatively similar to that proposed
by Bardeen, Baym, and Pines; it changes sign at somewhat lower momentum
transfers than the BBP result, varies little with concentration, and provides a
physical basis for understanding the BBP result. The effective interaction
between quasiparticles of parallel spin, here determined for the first time, is
essentially repulsive in the very dilute limit; as the concentration increases, it
becomes increasingly attractive at low momentum transfers, and resembles
closely that between antiparallel spin quasiparticles at 5% concentration. The
concentration-dependent  transport  properties calculated from these
pseudopotentials (which involve only one phenomenological parameter) are in
good agreement with experiment at saturated vapor pressure (SVP), 10 atm, and
20 atm. Maxima in the thermal conductivity and spin diffusion are predicted to
occur at concetrations somewhat less than 4 %. Because the effective quasipar-
ticle interactions are somewhat more repulsive than those previously proposed,
we find the transition of the *He quasiparticles to the superfluid state takes
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place at significantly lower temperatures than many previous estimates; our
predicted maximum superfluid transition temperature is 2 X 108 K (for a 0.6%
mixture at 20 atm).

KEY WORDS: Dilute *He-*He solutions; quantum liquids.

1. INTRODUCTION

The study of dilute solutions of *He in superfluid “He received its initial
impetus from the experimental dicovery by Edwards et al. that at saturated
vapor pressure (SVP) *He is miscible in *He, at concentrations less than
about 6%, down to a temperature of absolute zero.) The thermal and
transport properties of dilute solutions at low temperatures result from the
interplay of the *He quasiparticles and the phonon-roton excitations of the
superfluid. At very low temperatures the latter play a negligible role; the
system then behaves as a Fermi liquid of 3He quasiparticles moving through
a background “He ether. By changing the *He concentration one can adjust
the Fermi energy; hence mixtures provide an opportunity to study Fermi
liquid effects over a wide range of densities.

Early experiments on the transport properties of *He—*He mixtures
were carried out by Anderson et al.,'” while the pioneering theoretical
calculations were carried out by Bardeen, Baym, and Pines (BBP),”” with
results which agreed well with experiment. BBP showed that the effective
interaction between two *He quasiparticles is made up of two distinct
contributions: a direct interaction and a ‘He-induced interaction. Both
interactions are of the order ~m,s” in the long-wavelength limit, while the
combination of the yields a rather weak interaction ~(a’m,s?), where s is
the *He sound velocity and a ~0.28 is the excess volume occupied by the
YHe impurity. The physical origin of the weakness of this interaction comes
from the fact that *He is an isotopic impurity of “He. Since the force fields
of the *He and “He atoms are identical, two *He atoms in a “He background
“feel” each other only because they occupy a larger volume. The long-
wavelength part of the effective interaction between two *He quasiparticles is
thus equivalent to that between two ‘“holes” of relative volume ¢ in the
liquid.

BBP further assumed that the effective interaction depends only on the
momentum difference between the initial and final states of two ‘He
quasiparticles, and is independent of the *He concentration. In order to
explain the results of spin diffusion experiments, they proposed a simple
phenomenological g-dependent effective interaction,

VERP(q) = V57 cos(fq) (1.1)
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where V3" ~ —a’m,s?/n, and their best fit value of f was found to be
~3.16 A. BBP used this model potential to calculate the Fermi liquid
parameters and the *He superfluid transition temperature 7.. They found
that T, ~ 107° °K for a 1.3% solution, and T, ~ 10~° °K for a 5% solution.
Their calculated result for the thermal conductivity, x, however, did not yield
a consistent fit to the subsequent measurement® at either x = 1.3% or 5%
concentrations.

Following the pioneering work of BBP, several theories have been
proposed to give a better account of transport measurements:

(i) Ebner® constructed an effective interaction ¥(g) in the form of a
power series in g°. By assuming ¥(q) is independent of concentration and
fitting his results for x and D to experiment, Ebner determined the coef-
ficients in the power series. Ebner’s approach can thus be regarded as an
improved treatment of the momentum dependence of the effective interaction;
his resulting potential is not far from that proposed by BBP.

(i) Fu and Pethick® studied the concentration dependence of the
transport properties by adopting the BBP potential, Eq. (1.1), as a bare
interaction between two *He particles, and then using perturbation theory to
calculate the scattering amplitudes as functions of *He concentration, x.
They showed that although the strength of the two-particle interaction, (1.1),
is weak, the expansion parameter in perturbation theory, N(0)Vg?? [N(0) is
the density of states], is large (=~0.3 for x = 1.3%). This approach leads to
quite good agreement between theory and experiment for k and the viscosity
n, but is less successful in yielding agreement with the experiments of
Murdock et al.” for the spin diffusion in 5% mixtures.

(iii) Bashkin® calculated the thermodynamic and transport quantities
of the *He quasiparticles by treating these as a dilute Fermi gas with a short-
range interaction. In this theory, all quantities of interest are expressed in
terms of a single parameter—the s-wave scattering length. Bashkin’s results
provide an acceptable fit to experiment ar x = 1.3 %. However, Bashkin was
led to predict a superfluid transition temperature, 7,, in the millidegree
range, a prediction which subsequent experiments have shown is invalid.®

From these results it is evident that both the momentum and concen-
tration dependence of the effective interaction between *He quasiparticles
play an important role in determining the transport properties and the super-
fluid transition temperature of dilute mixtures. Ideally one would like to
know the momentum dependence of these effective interactions in the very
dilute limit, and then examine the way in which changes in this interaction
with increasing concentration influence both transport and possible super-
fluidity. However, the determination of this effective interaction is not an
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easy task, because the very considerable cancellation of the direct interaction
against the induced interaction means that each quantity must be known to a
very high degree of accuracy in order to arrive at a reasonable accurate
result for their sum.

More specifically, as we shall see in the following sections, one needs to
know four quantities in order to determine the effective interactions: the
effective direct interaction between *He quasiparticles of parallel and
antiparallel spin; the effective interaction between a *He quasiparticle and
the background *He liquid, and the nonlocal (i.e., wave-vector-dependent)
static density susceptibility of the *He background. In this paper we
determine these quantities by taking as our starting point the theory
developed by Aldrich and Pines (hereafter AP) for the calculation of
elementary excitations in liquid “He"® and *He.'!:1®>? Their theory yields
directly the nonlocal “He density susceptibility in the very low concentration
limit, and can easily be extended to obtain this quantity as a function of *He
concentration. AP obtain the restoring force for zero sound in both “He and
*He from a configuration space pseudopotential which describes in simple
physical fashion the way in which the effective interaction between quasipar-
ticles in the liquid differs from that of bare *He or *He atoms. We adopt a
similar approach to the calculation of the effective direct *He—*He quasipar-
ticle interactions and the *He-*He interaction in dilute mixtures. At any
given system density we take the AP configuration space interaction, f*(r),
between *He quasiparticles as our benchmark, and develop a simple physical
model for the way in which this interaction changes when one replaces one
or both of the *He particles by a *He quasiparticle.

Dilute mixtures may be regarded as providing a bridge between pure
“He and *He liquids; as one replaces “He atoms with *He atoms, one can
study the way in which the isotopic mass change (which gives rise to an
enhancement in the liquid of the zero point motion of the *He atoms
compared to “He) and the Pauli principle (which influences the short-range
correlations between *He quasiparticles of parallel spin) act to alter the very
strong short-range correlations between ‘He atoms in the liquid which are
responsible for the difference between f°(r) and the bare two-body
interaction. We show that there is a well-defined hierarchy of physical
effects: the strong short-range particle interactions play the dominant
physical role; next comes the influence of zero point motion, while least
important, but still of substantial physical importance for the properties of
either dilute mixtures or pure *He, are the effects of the Pauli principle. We
find moreover a comsistent trend in the change of the effective direct
interactions with increasing concentration, and show how the AP form for

? For a recent review of the polarization potential approach to quantum liquids, see Ref. 12.
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the effective quasiparticle interactions in pure *He represents a natural
extension of our results for dilute mixtures.

We use our calculated model pseudopotentials to construct net effective
interactions between *He quasiparticles of parallel and antiparallel spin. In
the very dilute limit at SVP the latter effective interaction resembles that
proposed by BBP and Ebner,” in that it changes sign from attraction to
repulsion at momentum transfers ~0.4 A", the precise form of our
interaction is, however, somewhat different. From the concentration and
pressure dependence of our pseudopotentials we are able to calculate
explicitly the changes with concentration and pressure of the net *He
quasiparticle interactions. The latter may then be used to calculate the
corresponding scattering amplitudes, and through these, transport and super-
fluid properties.

Because detailed experimental information on the Landau parameters as
a function of concentration is not available for dilute mixtures, our model
pseudopotentials are constructed with the aid of simple scaling arguments for
the concentration dependence of the spatial averages of the configuration
space interactions between *He quasiparticles and the background *‘He
liquid, and for the direct effective interactions between *He quasiparticles.
Our theory contains only one free parameter (which determines the
configuration space interaction between parallel spin *He quasiparticles),
this parameter is chosen to provide the best fit to spin diffusion experiments.

There are three kinds of experimental tests of the effective interactions
we derive in this paper: transport properties (spin diffusion, thermal conduc-
tivity, viscosity); the current upper limit on the superfluid transition
temperature; and neutron scattering experiments on elementary excitations in
dilute mixtures,**'* which provide information both on the way in which
the phonon-maxon-roton spectrum is altered, and on the density and spin-
density fluctuation excitation spectrum of the *He quasiparticles. In the
present paper we confine our attention to the first two experimental tests; we
report on the results of calculations which show good agreement between
theory and experiment for mixtures at SVP, 10 atm, and 20 atm. We predict
a maximum superfluid transition temperature of some 2 X 107* K (for a
0.6% mixture at 20 atm), a prediction which may prove easier to disprove
than verify. We show elsewhere!’® that agreement between theory and
experiment is equally satisfactory for the results of the neutron scattering
experiments.

The plan of this paper is the following. In Section 2 we consider the
extension to finite momentum transfers of the BBP approach to the effective
quasiparticle interaction and review briefly polarization potential theory. In
Section 3, following a review of the AP configuration space pseudopotentials
for pure ‘He and *He, we construct pseudopotentials to describe the

822/38/1-2-19
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SHe—"*He and *He—'He direct effective interactions, and combine these with
our results for the nonlocal density susceptibility to obtain the net concen-
tration and momentum-dependent effective interactions between ‘He
quasiparticles. In Section 4 we report on the results of our calculations of the
transport properties and maximum superfluid transition temperature for
mixtures of arbitrary concentration at SVP, 10 atm, and 20 atm, while
Section 5 contains our summary and conclusions.

2. DIRECT AND INDUCED QUASIPARTICLE INTERACTION

The long-wavelength macroscopic approach of BBP to the calculation
of the *He quasiparticle interaction may be extended to finite momentum
transfers in the following way. Let the direct effective interaction between
'He quasiparticles of parallel and antiparallel spin be described by
momentum-dependent interactions, V;T and Vgl, while the effective
interaction between these quasiparticles at positions r; and the background
“He liquid takes the form

Hy = u,pfeen .1

qi

where p, is the “He density fluctuation. In this paper we shall confine our
attention to low-frequency properties of the *He quasiparticles, so that we
need not take into account their coupling to current fluctuations in the
background *He liquid; it is then the interaction, Eq. (2.1), which is respon-
sible for the induced interaction between the *He quasiparticles. The latter
may be simple derived without restoring to field theoretic methods by using
linear response theory.!® In this approximation (which is applicable to
dilute mixtures), a given *He quasiparticle, at R, say, induces a static “He
density fluctuation,

(pg) =x(g, 0)e’ v R (2:2)

where x(g, 0) is the nonlocal static density susceptibility (or static density—
density response function) of the background *He liquid. The action of this
density fluctuation on a quasiparticle at R, is, according to Eq. (2.1),

uzx(g, 0)e' =% (2.3)

It follows that the net interaction between *He quasiparticles, JT or f ;l,
takes the form

fIT=vil+ ulx(q. 0) (2.42)
fi=VH+uix@,0) (2.4b)
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In practice one is often interested in the spin-symmetric and spin-
antisymmetric quasiparticle interestions, which are defined as

=T+ rlh2 (2.5a)
fe=l—rlhy2 (2.5b)

Since the induced interaction is spin independent it follows that /7 is deter-
mined entirely by the spin dependence of the direct effective interactions
between the *He quasiparticles.

All four quantities which enter into the determination of f qT ! and I ; L
may be expected to vary with concentration. One does not however have
complete freedom in choosing these quantities, since in the long-wavelength
limit (g, 0) must reduce to the compressibility; thus

n(x)

T (2.6)

lim x(g, 0) =
g-0
where s and n are the first sound velocity and density in the mixture.
Moreover, the quantity

fe=vil—vj (2.7)

is related to the Landau theory parameter F;, and the experimentally
measured spin susceptibility, y, of the mixture, according to

Fi=N0)f3 (2.8)

and
m*py B’
- 2.9
=T 11 Fe (29)
where N(0) is the density of states per unit energy, m* the quasiparticle
effective mass, and f the Bohr magneton. Similarly, /3 is related to the spin-
symmetric dimensionless Landau parameter,

Fy=N()/; (2.10)

However, as discussed in the following section it is a present difficult to
extract the latter quantity from experiments. Finally, in the low concen-
tration limit one knows from the work of BBP the quantities u, and VJ L
while we show in the next section that in this limit one likewise can express
VJT in terms of a, the excess molar volume.

We determine the quantities Vq”, Vq“, and u, by constructing
pseudopotentials which are closely related to the pseudopotential, /7, which
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Aldrich and Pines (AP) used to describe the effective interaction between
*He quasiparticles in liquid *He.'® In their polarization potential theory of
the helium liquids, AP describe the consequences of the strong interactions in
’He and *He in terms of self-consistent fields. The strengths of these fields
are determined by physical arguments, static measurements, and sum rule
considerations. The theory makes possible a unified treatment of the
elementary excitation spectra of both *He and “He, and yields results in
excellent agreement with experiment.

For “He, the AP self-consistent fields are a scalar polarization potential

fap(g, ) (2.11)
which couples to the density fluctuations, {p(g, w)), and a vector potential
(g, w)) (2.12)

which couples to the current fluctuations, (J(g, ®)), and takes backflow into
account. The “He density—density direct response function is then calculated
by considering the response of the system to an external field plus these self-
consistent fields; in the static limit of interest to us here, one can neglect the
backflow term, Eq. (2.12), and write

X44 sc(q9 0)
x(g.0)= - 2.13
( ) 1 —quM,sc(Qa 0) ( )

where x4, (g, 0) is the linear response of the system density to the sum of
an external field and the internal polarization field, Eq. (2.11) coupled to the
*He density fluctuations. It is the strength of the internal polarization field,
»» which is of central interest to us in this paper. [We refer the interested
reader to APU? and to Ref. 17 for a discussion of the calculation of

*5:(q, 0).]

3. 3He—"He AND *He—°He EFFECTIVE INTERACTIONS

Before proceeding to calculate the pseudopotentials which describe *He-
“He and *He-*He interactions in dilute mixtures it is instructive to review
briefly the results which have been obtained for pure *He and pure *He.

3.1. Pseudopotentials for *He and *He

Aldrich and Pines®'" developed a physical model for the nonlocal
restoring forces responsible for the collective modes in *He and *He by
relating their strengths to configuration space pseudopotentials which
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describe the effective interaction between quasiparticles. In the case of ‘He,
they argued that on going from a gas to a liquid, the major change in the
effective interaction between ‘He atoms will come at short distances where
the strong (nearly hard core) bare atom repulsion makes it unlikely that the
particles will approach sufficiently close to feel the full consequences of that
repulsion. Thus they argued that the long-range part of the configuration
space effective interaction, f*(r), will be nearly the same as that between bare
*He atoms, while the short-range part (i.e., at r < 2.68 1&, the distance at
which the bare interaction changes from attraction to repulsion) will be
altered to a soft core repulsion. They took /*(r) to have the functional form

-G}
ool 5] were

_<%+%), ror (3.1)
where a, = 28400.5 A%, as=10163.3 A, r,=3 A, and the parameter b is
chosen to yield a continuous curve at r,. The spatial average of f*(r), f}, is
known from the compressibility sum rule, /% = m,s*/n. Hence once one has
chosen the shape function for f*(r), as in Eq. (3.1), there is only one free
parameter; this may be taken to be either the distance, r,, at which f*(r)
changes from being repulsive to attractive, or the core height at the origin, a.

AP chose r, at all pressures to be identical to the range of the repulsive
interaction between two bare helium atoms, r, = 2.68 A, and further assumed
that the shape of the repulsive interaction did not vary with pressure. Hence
at any density f°(r) is uniquely determined by the compressibility. Their
results for /*(r) and its Fourier transform, /5, at P =0 and 25 atm are shown
in Figs. la and 1b. It is this interaction between *He atoms which acts as a
benchmark for the effective He-*He and *He—’He interactions in the
mixtures. Note that since the strength of the interaction, f§=m,s’/n,
increases with pressure the repulsive part of the pseudopotential likewise
must increase, since the attractive part is unchanged.

For *He, two pseudopotentials need to be determined: f TT(r), which
describes the interaction between two spin-parallel particles; and f ”(r),
which describes the interaction between two spin-antiparallel particles.
APUY took the r dependence of these interactions to be of the same form as
Eq. (3.1); the spin-symmetric and spin-antisymmetric potentials f*(r) and
JS4(r) are then the averages of the sum and difference of /° TT(r) and £14(r),

Sy =511 + — )] (3.2)
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Fig. 1. (a) The Aldrich-Pines pseudopotential f*(r) for *He at SVP (solid curve) and at
P =25 atm (dashed curve). (b) The scalar polarization potential nf7, for 0 and 25 atm.
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while the long-wavelength limits /7 and /7§, of the Fourier transforms, /7 and
o> are related to the measured Landau parameters, F§ and Fg, according to

f3=F5/N(©0) (33a)
£3=F4N(0) (3.3b)

where N(0) is the density of states per unit energy.

It is instructive to compare the spatial averages, f§'(*He) and £ }(*He),
of these pseudopotentials with the corresponding quantity for *He, /5. *He at
21 atm has the same density, n, as “‘He at SVP, yet one finds that
nfi{(*He) = 46.5 K, nf||(*He) = 45.2 K, while nf§=27.3K (see Table II).
For particles of antiparallel spin, the Pauli principle plays no role in deter-
mining the effective interaction; the substantial difference between f J l(3He)
and f% must therefore be attributed to the larger zero point motion of *He
atoms. AP argued that this increase comes about because the zero point
motion in the liquid increases the distance, r1l, at which the effective
interaction between *He atoms becomes attractive. They found excellent
agreement with the neutron scattering measurements of the zero sound
spectrum with 71 =3 A for 3He at SVP. From this point of view it is to be
expected that at higher pressures the effect will be less pronounced, so that
r' should decrease with pressure. In recent work with Bedell, we find*® that
at 21 atm r't~2.8 A, in which case, as may be seen on comparing Fig. 2

60 T T T T
P=21 atm
50 Pure 3He
40 =
g
30 —
.20 -
10 =
° \/———
_ | i
195 T 3 Z 5
r {A)

Fig. 2. The pseudopotentials / ”(r) (dashed curve) and f Tl(r) (solid curve), for *He at
P =21 atm. The difference between r17 and r is too small to be scen on this scale.
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with Fig. la, for ’He and “He at the same density the enhanced zero point
motion of the *He atoms not only acts to increase the effective range of the
repulsive part of the interaction, but also reduces the effectiveness of the
screening of this repulsive interaction (the core height all=55.7 K, while the
core height for pure ‘He is 49.3 K).

What now is the role of the Pauli principle? Since f J T(3He) is less than
fIYPHe), it is evident that while the Pauli principle acts to reduce slightly
the overall strength of the repulsive interaction between quasiparticles, its
effect is, in this case, much smaller than that of the enhanced zero point
motion. One might expect on general grounds that the range, 1T, of the
repulsive part of the interaction between parallel spin quasiparticles will
differ somewhat from '\ Aldrich and Pines noted that this difference,

S=rT—rll (3.4)

was too small to be determined accurately from their fit to the neutron
scattering experiments. Subsequently Bedell and Pines’® found that the
quasiparticle scattering amplitudes constructed from the AP pseudopotentials
are very sensitive to the parameter ¢; by comparing the calculated transport
coefficients with experiments, they found that 6 = 0.03 A at SVP and that it
decreased with increasing pressure until it reached a constant value, § =
0.007 A at P = 21 atm. This “best fit” decrease in ¢ as the pressure increases
confirms the argument of Aldrich and Pines that the role played by statistics
becomes less inportant as the strength of interaction between particles
becomes stronger. The results of BHPU'® for the peudopotentials f''(r) and
f”(r) at P=21 atm are shown in Fig. 2.

3.2. Effective Quasiparticle Interactions in 3He—*He Mixtures

To calculate /3 and f7 in SHe—*He mixtures we need to know four
quantities: the effective *He—*He quasiparticle interaction, u,; the static
density—density response function, x(g,0); and the effective direct
interactions between *He quasiparticles of parallel and antiparallel spin, VTT
and V“ We determine the three potentials as a function of concentration by
using the same approach as that adopted by Aldrich and Pines for *He and
‘He: we assume that the long-range part of the interaction in configuration
space is identical to that between bare atoms, that 1t goes over smoothly to a
repulsive interaction at some distance r, (3>2.68 A) and that it takes the
form of a simple soft-core repulsion a[l — (r/r.)}] for r<r,. With this
assumption, for a given choice of r,, the potential is uniquely determined by
its spatial average. We therefore need to know
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4 0
uy=limu, = —lim | drr? ol y(r) (3.5)
g -0 g-0/9 qr
0 i .
pilah = 1imf dr r? S84 1ty b (3.6)
g-07Jq qr

as a function of concentration, and then determine the corresponding quan-
tities, r3™*, rcu, and rcﬁ.

3.3. v{l, v{L u,
The long-wavelength limit of the effective interaction between *He
quasiparticles as a function of density (or *He concentration, x), is readily
obtained from the measured value of the first sound velocity or com-
pressibility:
_oms*(x) 1
ST nx) T orf(o)x

S

(3.7)

For pure ‘He, the long-wavelength interactions between quasiparticles of
parallel (antiparallel) spin are obtained in similar fashion from the
experimentally measured specific heat, compressibility and spin suscep-
tibility, y,, according to

NOfi=F =YDy (3.8)
NO 3= F =2 TN (3.9)

Xp

where y is the gyromagnetic ratio, and N(0), the density of states, is given by

m*q
NO)= —nzh—f (3.10)
m* is determined from the specific heat, and
Fi=ri+ 56 (3.11)
N=rs—ra (3.12)

For the *He quasiparticles in *He—*He mixtures, the expressions (3.8)
to (3.11), are likewise valid. The specific heat was measured by Anderson et
al.”® at x=1.3% and 5%. The spin susceptibility y, has been measured by
Anderson et al.® and Ahonen et al.?® at several *He concentrations.
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However, since one cannot measure directly the compressibility of the *He
component in *He—*He mixtures, one cannot obtain F§ from (3.8). It is
possible, though, to obtain Fj from measurements of the second sound
velocity. Khalatnikov?) showed that at low concentration and zero
temperature, the second sound velocity is

VZ FS L 0y 2
W(T=0)==F (1 +F) (1 +?1)[1—x—:2—4<1 +a+ﬂ’,—n1’i) ]
i 4
(3.13)

where m;, the “inertial mass’ of *He, is related to the normal fluid density,
p, = nm;, and F? is defined as

R (3.14)

if one assumes Galilean invariance. Corruccini'”® measured the second
sound velocity u,, and then calculated F} by assuming m, =m*(x = 0) for
all concentrations; he obtains Fy=-0.114+006 at x=13% and
Fj=-0.26 £ 005 at x=5.0%. However, if we use the inertial mass,
m;~2.0mj}, at 5%, obtained by Sherlock and Edwards,?® we find that
Fy~—0.33 at x=15.0%. The results of F}, Fj, and m* obtained from
experiment are summarized in Table 1.

As may be seen in Table I, the present experimental uncertainty in £73
and Fj, or what is equivalent, 5 and f§, as a function of concentration is
such that one has a good deal of latitude in choosing these quantities.
Moreover, we wish to determine the effective interactions over a wide range
of concentrations and pressure for which experiment at present does not

Table I. Measured Quantities for 3He—*He Mixtures at x = 1.3% and 5% (SVP)

x 1.3% 5%
m* /m® 2.38 + 0.04? 2.46 + 0.042
FS —0.11 + 0.06% ~0.26 + 0.052
Fe 0.09 + 0.03? 0.08 + 0.03?
0.03 + 0.022°

FS 0.05 + 0.05° 0.15 + 0.05°
Fe 0.34 £ 0.1%2

0.18 + 0.06°2°

“ F§ is calculated from the “Galilean” relation: m*/m, = 1 + 1/3 F, where m, = 2.34 m} is
the *He effective mass as x — 0.
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provide a definitive guide to f7. We therefore develop scaling laws to obtain
Vilx), V]! and wuy(x); and hence f{'(x) and f{}(x). We consider the
momentum-dependent interactions in the following sections.

In the zero concentration limit, V]! and u, are obtained by the ther-
modynamic arguments of BBP,

m,s’

yn

(3.15)

lim vil=(1+2a)

2

(3.16)

m,s
li = 2
lim u, (1+a) ,

where n, is the *He density and s is the sound velocity, while the long-
wavelength limit of the density—density response function is given by
Eq. (2.6). The limiting value of ¥! can be obtained if one notes that the
vanishing of the forward scattering amplitude for parallel spin quasiparticles
in the zero concentration limit leads to the requirement that f]'(0) = 0. From
Egs. (2.6) (3.15), and (3.16), it follows that

2
m,s

lim V{l=(1+a)?—— (3.17)

x -0 n,

lim le:_a2ﬂs_2-

x-0 0 ny

(3.18)

To scale these results to finite concentration, we first note that VJ Tin
(3.17) is almost identical to the spatial average, f I, of the effective
interaction between *He quasiparticles of parallel spin in pure *He at a
pressure (~21 atm) such that its density is the same as “He at SVP. Indeed,
as may be seen in Table II the difference of (3.17) and the f! obtained by
using the data of Greywall®® is less than 1%. We assume this result holds
true at all concentrations; thus, at a given °‘He concentration we first
calculate the total particle density, then determine by extrapolation from the
data of Greywall the value of f| JT of pure *He at the same density, and
finally get ¥{T~ ]l The value of ¥"}! at finite concentration is then fixed
by the experimentally determined Landau parameter, F2 = IN(0)(f{T— £
we find that an acceptable fit to the latter can be obtained with the simple
scaling law,

ms?(x)

n{x)

where f= 1.2. The sound velocity of *He is found experimentally to be a

Vil=(1+px)(1 + 2a)

(3.19)
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Table Il. Comparison of the Interactions, nfg T, nfgl, nvg T, nvgi, and nu g (in Degreeé
Kelvin) in 3He—*He Mixtures at Various Concentrations; with the Corresponding Inter-
actions nfg T, nfgl in pure 3He, Determined from the Experimental Results of Greywall, 24

and nf§ in Pure *He at the Same Densities

X (%) 0 13 2.4 5.0 6.0
n (A=) 002180 002172 002165 002149  0.02143
s 273 26.7 26.2 25.2 24.7

nutg 35.1 34.6 34.1 333 32.8
nylt 428 42.5 423 418 416
nfl4(*He) 46.5 45.8 452 43.8 433
]l 45.0 443 437 42.4 419
)l (CHe) 452 44.5 42.8 424 41.9

nf )t ~2.20 214 -2.10 -2.01 ~1.99
nfl! 0 034 ~0.68 _1.45 -1.73

linear varying function of the particle density throughout the density range of

interest for mixtures. The Landau parameter Fj is given by
F§=NOT =119 =N {T- v (3.20)

since the phonon-roton induced interaction cancels. Our resulting values of
F§ as a function of *He concentration are shown in Fig. 3, while the

| I 1 I I
04 ThlS Work |
go | ===~ Dilute Gas Model _J
o r o -
0.2 T - -
- ”’
0]
Fol ~Ssmmmeeo__
-03— % —
-06 | 1 | | |
’ 0.01 002 003 004 005

Fig. 3.

X

The deduced values of F§ and F§ as functions of ‘He

experimental data are from Table L.

concentration. The
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corresponding value of Vg Iand V(I Lare compared with those of pure *He at
the same density in Table II.

To obtain the spatial average of the *He—*He interaction at finite
concentration, we assume that the BBP expression, Eq. (3.18), for the
interaction between quasiparticles of opposite spin applies at finite concen-
tration

2 m4S2(x)

n(x)

From (2.4a), f 31 can be separated into direct and phonon-induced terms,
according to

fit=—a (3.21)

ot =Vt +uix(0,0) (3.22)
which, on making use of Egs. (2.6) and (3.19), becomes

mys*(x) ,  nx)
nx) % musi(x)

fot= (1= fx)(1 + 2a)

(3.23)

From (3.21) and (3.23), we find that by assuming that u, increases with
concentration according to

mys*(x)

uy= (1 + yx)(1 +a)—m

(3.24)
and taking y = 0.56, we obtain the result (3.21). The corresponding vatues of
u, are likewise given in Table II, while our deduced value of Fj is given in
Fig. 3.

We see from Egs. (3.19) and (3.24) that as the *He concentration
increases (and the overall system density decreases) the spatial average of
the direct interaction between antiparallel spin *He quasiparticles, when
compared to that between ‘He particles, ms?/n, increases, as does the
effective *He—*He interaction. The physical origin of this behavior is the
enhanced role of the zero point motion of the *He atoms as the overall
system density decreases; indeed we see that § =2y, consistent with our
underlying physical picture of the low concentration limit, where zero point
motion increases the *He-*He interaction by factor of (1 + ) and the
effective interaction between antiparallel spin *He quasiparticles by a factor
of (1 2a).

On comparing the behavior of V]! with that of V]%x) we see the
combined influence of the Pauli principle and zero point motion as a
function of concentration. The first point to be noticed is that as in the case
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for pure *He the statistical correlations arising from the Pauli principle
represent a comparatively small correlation to those arising from the
combination of the strong short-range particle interaction and the zero point
motion of the *He quasiparticles. Thus, in the very dilute limit, the spatial
average of the direct effective interaction between parallel spin *He quasipar-
ticles is only (a®ms?/n) greater than that between antiparallel spin quasipar-
ticles. This effect may be attributed to a Pauli principle enhancement in
dilute mixtures of the way in which zero point motion increases the effective
*He quasiparticle interaction over that of the background *He quasiparticles.
This “Pauli enhancement™ decreases with increasing *He concentration [it is
only ~0.3a*(ms*/n) at x =0.05], a result which reflects the fact that the
influence of the Pauli principle is largest in the low-density limit.

It is also instructive to compare the effective direct interaction between
antiparallel spin *He atoms in dilute *He-*He mixtures with those in pure
*He at the same density. As may be seen in Table II, in the very low concen-
tration limit V]~ fJ{(*He) — 1.7 a®ms?/n, while at 5% concentrarion we
have Vgl:fglGHe)—azmsz/n. It would seem that for a given pair of
antiparallel spin *He quasiparticles in pure *He the net result of replacing all
the intervening *He atoms (of either spin) by *He atoms, while keeping the
total density fixed, is to decrease the average effective direct repulsion
between the atoms by an amount ~a?ms?*/n; put another way, in the very
dilute mixture, the strength and/or the range of the short-range repulsion is
reduced compared to pure *He. [An equivalent statement is that in the
mixture zero point motion is somewhat less effective in increasing the
strength of the net repulsion between *He quasiparticles of antiparallel spin
(compared to “He at the same density) than it is for pure *He.]

We have remarked that the spatial average, VJT, in the very dilute
mixture is within 1% of that for a pair of *He quasiparticles in pure *He at
the same density, and have proposed that this same situation obtains at finite
concentrations. This situation likely comes about as a result of two opposing
effects: as with antiparallel spin particles, replacing the *He atoms by ‘He
atoms decreases the average effective direct repulsion by an amount of
magnitude ~a*(ms*/n); on the other hand, Pauli principle correlations act to
increase this repulsion by an amount of the same magnitude.

In concluding this discussion we see in Table Il that in the mixtures
both £]* and £} remain of order a*ms?/n as the *He concentration increases
[the first, f{!, by virtue of our assumption, Eq.(3.21)]. We note that /]’
becomes increasing attractive as the concentration increases, and at the
highest concentrations begins to be comparable to f JL; thus as the *He
concentration increases the Pauli principle bcomes less effective in reducing
the net interaction between *He quasiparticles, and the overall tendency for
this interaction to be attractive wins out.



Effective Interactions in Dilute Mixtures of 3He in He 291

3.4. ulr,x), V4, x), and V{1, x)

Given the spatial averages of the pseudopotentials, u(7), V“(r), and
VTT<r), determined as a function of concentration by the scaling laws
described above, it follows that for a given shape, each interaction may be
characterized by either its core height (a,,, 2}, a'') at the origin or the range
(rag, % r11) of its soft-core repulsion. In contrasting each of these effective
interactions with that between two background ‘He atoms in the liquid, at
any given density there are two “extreme” possibilities:

(i) The very-short-range part of the conﬁguration space interaction is
essentially unchanged when one replaces a ‘He atom by a *He quasipar—
ticle—in which case the entire burden of the change from nf7 , = ms’ is born
by an increase in the range of the soft-core repulsion compared to 2.68 A.

(ii) The range of the short-range repulsion is essentially unchanged;
the entire burden of the increase in strength of the various spatially averaged
direct interactions is then born by an increase in the net strength of the short-
range repulsion interaction.

To be more specific, let us compare the *He-*He quasiparticle
interation, in the very dilute limit, with f3(r), the effective interaction
between *He atoms at the same density.

As we have seen, when one replaces a single “He atom by a *He atom,
the enhanced zero point motion of the latter gives rise to a spatially averaged
effective *He—*He particle interaction which is ~a(~30%) larger than that
between two *He atoms. On the first alternative (an increase in r,), this
increase comes about entirely at the expense of the attractive part of the
effective interaction; it is associated with a change in the effective interaction
at distances r such that 2.68 A<r< rys = 2.75 A. On the second alternative,
r34_268A and the ~30% increase in the spatially averaged effective
interaction is associated with changes in the effective interaction at distances
small compared to 2.68 A. Given a choice of one extreme or the other, the
first is far more appealing on physical grounds, since the substantially
enhanced (compared to a *‘He atom) zero point motion of a *He atom
strongly suggests the need for modification in the configuration space
interaction at distances =>2.68 A. In what follows therefore we pursue the
consequences of this alternative for both u(r) and V' l(r) We have in fact,
used pseudopotentials based on the latter assumption (r, = 2.68 A) to carry
out calculations of transport properties and mode-mode coupling with
results which are in far less satisfactory agreement with experiment than
those using the first alternative. We have also examined elsewhere’®’ the
consequences of modifications in the effective interaction associated with
some changes in short-range (r < 2.68 1&) part of the interaction, without,
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however, embracing the unphysical extreme of attributing all physical effects
to such short-range modifications. Such an approach involves introducing an
additional free parameter, and does not yield better results for either
transport properties or mode—mode coupling than the minimal assumption
[no changes in f1!(r) or u(r) from f*(r) for r < 210\] we now explore.

We thus take all pseudopotentials assumed to be of the AP form,
Eq. (3.1); a4, the core height for u(r), and a ', the core height for VIr), are
taken to be the same as the core height of *He—*He potential, a, at the same
density

al=a, =q (3.25)

From (3.15) and (3.16) it follows that the effective range, ry,, of the
repulsive interaction between ‘He and “He atoms must be greater than
2.68 1&, while that between *He atoms of antiparalle] spin, r1d, is greater yet.

In considering the role played by the Pauli principle in determining the
form of V11{r), we recall that for x <0.06, V!> V' (f¢ is positive), so
that for these concentrations Pauli principle correlations, which keep, on
average, particles of parallel spin farther apart than those of antiparallel spin,
enhance the role played by zero point oscillations in increasing the strength
of the direct interaction between parallel spin particles over that of *He
quasiparticles. Were one to choose aﬁza“, it follows that r'T> rTL we
introduce the parameter J, defined in Eq.(3.4), to characterize the
interaction between parallel spin quasiparticles in this model. Since Pauli
principle correlations act at distrances <2.68 A as well, we further expect
that the screening of the short-range part of the effective interaction between
SHe atoms of parallel spin will be somewhat more effective than that
assumed for antiparallel spin atoms, so that one should have

al"<a't (3.26)

We deal with the consequence of Eq. (3.26) by regarding J as a free
parameter of the model, one which can be varied as a function of concen-
tration to obtain the “best” subsequent scattering amplitudes, as measured by
the agreement between theory and experiment for the transport coefficients.
Physically, as is the case for pure *He, & gives a measure of the effectiveness
of the Pauli principle. We expect on physical grounds that this “Pauli prin-
ciple parameter,” J, will be larger for solutions with a smaller *He concen-
tration. This turns out to be the case in practice; our best fit (from transport
calculations) values of & turn out to be 6=0.13A for x=1.3% and
§~0.03 A for x = 5%. The resulting potentials are summarized in Table III.

It is interesting to compare the core height, a'l, of the direct interaction
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Table ll. Comparison of the Core Heights and the Core Radius of the Pseudopotentials:
ulr), VI T(r), vI l(r), in 3He—*He Mixtures and fﬁ(r), f“(r), in Pure 3Hg; Core Heights, a3,,
a'l,and allin Degrees Kelvin; Core Radii, r34, 1T, and r'l, arein A

System X (%) P(atm) a;, 34 all 1l all Pl
‘He-*He 0 0 49.3 2.751 49.3 2.821 39.8 2.993
‘He 20.6 55.7 2.773 54.2 2.780
‘He—*He 1.3 0 48.9 2,752 489 2.825 41.6 2.956
‘He 20.1 54.8 2.779 53.3 2.785
‘He—*He 2.4 0 48.6 2.753 486 2.829 42.8 2.931
*He 19.6 54.0 2.785 52.5 2.792
‘He—*He 5.0 0 47.9 2.756 47.9 2.827 52.5 2.870
‘He 18.5 52.3 2.796 50.9 2.803
‘He—*He 6.0 0 47.7 2,757 477 2.840 47.4 2.846
*He 18.2 51.7 2.800 50.3 2.807

between two spin-antiparallel *He quasiparticles in *He—*He mixtures with
that in pure *He. We see that in the small concentration limit, al' (pure
He) > a"*(*He—*He). The physical origin of this result is the same as that
which leads one to conclude that a'* (pure *He) > a (pure ‘He); because of
the larger zero point motion of *He atoms, the screening of the short-range
hard core is somewhat less effective than that found for *He atoms. We
expect the consequences of zero point motion will be larger for pure *He and
smaller when we replace all but two *He atoms with *He atoms. As the total
density decreases, the consequences of zero point motion will be weaker,
hence the difference between the core heights al* (pure *He) and a'l
(*He—*He) is smaller. A similar argument can be applied to a'l, as one can
see from Table III. The difference a''(*He) —a''(*He—*He) is larger than
a'{(*Hz) — a"{(*He—*He) at very low concentrations, because in this limit
the Pauli principle is more effective for dilute *He—*He solutions than for
pure *He. The Pauli principle further reduces the possibility that *He atoms
“feel” the short-distance repulsion, and hence a'l in *He—*He mixtures is
pushed further down.

The pseudopotentials ¥'1(r), ¥'14r) and u(r) for *He—*He mixtures and
the *He—*He interaction, f(r), at the same density are shown in Fig. 4 for
x = 5%, while their Fourier transforms, VqT !, VJL, u,, and f5 ,, are shown in
Fig. 5. We compare, in Fig. 6, these interactions in the x — 0 limit with the
BHP"? effective interaction between *He quasiparticles in pure liquid *He
at the same density. Note that while there are significant differences between
the various interactions at low momentum transfer (g S0.8A~'); for

822/38/1-2-20
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Fig. 4. Model pseudopotentials for x = 5%: VTT(r) (dashed curve), V“(r) (dash~dotted
curve), u(r) (dotted curve), and f3(r) (solid curve).
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Fig. 5. The momentum-dependent pseudopotentials /7 ,, VqT T, VqT i, and u, for x = 5%.
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Fig. 6. The pseudopotentials f3 ,, Vq”, Vll and u, in the dilute limit, and the corresponding
potentialsflT andfll for pure *He at the same density.

g> L5 ,&", the momentum dependence and magnitude of the interactions
display a striking similarity.

3.5. f]'and £}’

Given the results for the *He-‘He quasiparticle interaction and the
direct part of the *He—*He quasiparticle interaction, the remaining quantity
which is needed to specify the momentum-dependent effective interactions is
the static density—density response function, y(g, 0), which AP express in the
form, Eq. (2.13). In the very dilute limit (x — 0) we can determine y(g, 0) by
using the AP fit to the results of Cowley and Woods?*; the AP results for
—1/x(g, 0), f5.4» and —1/x,4 (g, 0) are shown in Fig. 7. At finite concen-
tration, we calculate y(g, 0) by scaling the AP results to lower densities. Our
resulting effective potentials are shown in Fig. 8. We comment briefly.

We note first that at all concentrations f J ! has the same general shape
as the phenomenological BBP interaction; our work thus serves to justify the
general character of the BBP interaction although, as may be seen, our
interaction becomes repulsive at a somewhat lower momentum transfers than
that proposed by BBP. As may be seen from Eq.(2.13) and Fig. 7, the
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Fig. 7. The quantities —1/x(g, 0), /3 , and —1/x,, ..(g, 0) for liquid *He at SVP.

physical reason for the change in sign of the effective interaction may be
traced to the fact that x(g,0) falls off more rapidly with increasing
momentum transfer than the direct interactions increase; were x(g, 0) to be
comparatively flat for low g, f ;l would actually become more attractive with
increasing g (since ug increases more rapidly with increasing g than does
V;l). The concentration dependence of f° Jl is seen to be comparatively slight.
Our results for f ; f display a more striking concentration dependence,
which reflects the concentration dependence of the Pauli principle
correlations in dilute mixtures. In the very low concentration limit we see
that this interaction (here determined for the first time) is essentially
repulsive; the slight additional spin-induced repulsion (~a’ms?/n) is
sufficient to bring this about. On the other hand, by the time one has reached
a 5% concentration, where, as we have seen, the Pauli principle correlations
play a far smaller role, f ;T displays qualitatively the same behavior as f’ ; L
The change in sign of the effective interactions at finite momentum
transfers is the physical origin of the exceedingly low temperatures we
calculate for the *He superfluid transition in *He—*He mixtures. As the
concentration increases, one samples an increasingly large fraction of the
repulsive part of the interaction between antiparallel spin particles—hence
the calculated decrease of T, with x. We see also in the next section that our
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Fig. 8. (a) The effective interaction flIT of *He quasiparticles for concentrations x = 0.001,

x=0.013, and x = 0.05. (b) The effective interaction qul of *He quasiparticles. Also shown is
the BBP potential, Eq. (1.1).

calculated Pauli-principle-induced changes in f ; f give rise in turn to maxima
in transpot coefficients at ~4 % concentrations.

3.6. Pseudopotentials at Higher Pressures

We have extended our calculations of the concentration dependence of
the effective interactions in *He—*He mixtures to finite pressures, with the
results shown in Figs. 9—11. We comment on our calculations briefly.

1. As is the case for SVP, we assume V] =r]T (pure *He) at all
concentrations (and pressures).

2. V{1 is readily determined once X, (or what is equivalent, F{) is
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X

Fig. 9. A comparison of our “scaling law” results for F§ with experiment at 10 atm. The
experimental results are obtained by combining the results of Ahonen et al.®® with the
effective mass results of Greywall. ®V

known. We find that, as is the case for SVP, a good fit to the measured
values of Fj(x) can be obtained with an expression of the form given by
Eq. (3.19), where the quantities o« and B are compared with the
corresponding values at SVP in Table IV. Our scaling law concentration
dependence of F§ at pressures of 10 atm and 20 atm is compared with
experiment in Figs. 9 and 10. Note that both a and f decrease with
increasing pressure; both are a consequence of the zero point oscillations of
the *He atoms, and the relative importance of the latter decreases with
increasing pressure.

3. As is the case for SVP, we assume that f J l, the net interaction
between antiparallel spin *He atoms in the mixture, is given by Eq. (3.21). It
follows that u,, the spatial average of the *He—*He effective interaction, may
still be written in the form, Eq. (3.24). Our calculated values of y at 10 and
20 atm are compared with those in svp in Table I; note that at these
pressures, we continue to have y ~ f§/2.

4. The effective interactions, ¥} = f11, and ¥} as a function of
density are compared with f Ji for pure ’He in Fig. 11. The presence of the
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Fig. 10. A comparison of our “scaling law” results for Fj with experiment at 20 atm. The
experimental results are obtained by combining the results of Ahonen et al.®” with the
specific heat results of Greywall. "
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Fig. 11. A comparison of the spatial averages, Vgi and VJ T, of the pseudopotentials, VH(r)
and VTT<r), which describe the direct interactions between *He atoms in dilute ‘He—*He
mixtures, with their counterparts, 0“ and foT T(gVJ T), for pure *He. The corresponding
experimental pressures for both pure *He and *He—*He mixtures are indicated by arrows.
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Table IV. The Excess Molar Volume, Dilute Limit Effective Mass,
and Scaling Parameters as a Function of Pressure

P a B Y my/m,
SVP 0.284 1.2 0.56 2.34

10 0.208 0.6 0.29 2.57

20 0.165 0.47 0.23 2.85

*He atoms in the mixtures enables one to reach (at 20 atm) a higher system
density than can be attained with pure *He; to obtain Vg Tat these densities
we have extrapolated from lower densities in the manner shown. One sees
that in the mixtures the Pauli principle “enhancement” of the interaction
between parallel spin *He quasiparticles (which is largest at low concen-
trations) persists at higher pressures, and that at a given pressure, near the
maximum observable concentration of *He atoms, one has ¥}~ V] Note
that the differences between the spatial averages of the various interaction
depicted there are Sa’m,s?(x)/n,.

5. These spatial averages are then used to construct the configuration
space pseudopotentials, u(r, x), ¥'¥r, x), and ¥''(r, x) at 10 and 20 atm in a
fashion which is identical to that employed at SVP. Thus the core height of
both u(r) and ¥T4(r) are taken to be the same as that found for f*(r) at the
corresponding density, while the core height of V”(r) is determined by our
choice of J. For each concentration, the “Pauli principle” parameter
8=rT— Ml is assumed to be pressure independent. At SVP, we found that
§=0.13 A at x=1.3% and 6 =0.03 A at x=5%. For x = 8.5%, we chose
0 >0.01 A, which is close to the value 6=0.007 A found by Bedell and
Pines for pure *He at pressures >21 atm).

4. TRANSPORT COEFFICIENTS AND SUPERFLUID
TRANSITION TEMPERATURE

One test of the correctness of the pseudopotentials determined in the
previous section is whether, as is the case for the analogous pseudopotentials
for pure *He, one can use these to obtain the scattering amplitudes for *He
quasiparticies to a good degree of accuracy. For a given set of scattering
amplitudes it is relatively straightforward to calculate the transport
properties (thermal conductivity, spin diffusion, viscosity) and obtain an
upper limit for the transition of the *He quasiparticles to a superfluid state.
The test then of the accuracy of the scattering amplitudes is whether these
provide a good account of the experimentally determined transport properties
and limits on the superfluid transition temperature.
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We here report briefly on our results, which have been obtained in
collaboration with Kevin Bedell, for the transport properties and superfluid
transition temperatures as a function of concentration and pressure. A
preliminary account of our calculations at SVP is given in Hsu,"*’ and a
detailed account of our work will be published elsewhere.*®

4.1. Transport Coefficients at SVP

The procedure we follow to calculate the transport coefficients is a
follows:

(1) For each concentration, a trial pseudopotential, VJ I, is determined
as a function of the single free parameter J, [Eq. (3.4)].

(2) The effective potentials f ;T and f ;i are then calculated by
Eq. (2.4).

(3) The Bethe—Salpeter equation is used to construct scattering
amplitudes from these effective potentials. Because the latter have not been
derived from a microscopic vortex function, they do not automatically
possess the right symmetry properties; correctly symmetrized amplitudes are
obtained from the nonsymmetric results by using the Bedell-Pines ansatz."”

(4) In solving the Bethe—Salpeter equation it is assumed that the
particle-hole effective masses which enter are momentum independent; it is
further assumed that

Fo(x) = Fi(x) = 4.14x — 22.86x> (4.1)

these values of F] and F{ are consistent with the experimental results of
Anderson et al.'”” and Owers-Bradley et al.”

(5) The thermal conductivity, #, spin diffusion coefficient, D, and
viscosity #, are then calculated by inserting the appropriate angular averages
of the symmetrized scattering amplitudes into the exact solutions of the
linearized Landau kinetic equations.*”

(6) The above procedure is repeated for a wvariety of trial
pseudopotentials (determined by our choice of ¢) until we obtain scattering
amplitudes which yield good agreement with experiment for D at x=1.3%
and 59%. Our results at SVP are summarized in Table V. As may be seen
there it is possible to obtain very satisfactory agreement with experiment for
x and D, but the agreement is less satisfactory for #.

A similar problem with calculations of # exists for the theories of
Ebner® and Bashkin®; on the other hand, while the agreement between the
theory of Fu and Pethick® and experiment is good for #, their results for D
are not in agreement with the more recent experimental determinations.”
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We have tried a number of different parameters f§ and y in Eq. (3.19) and
Eq. (3.24) to reduce the values of viscosity, and find that if the viscosity is
reduced by 50%, the thermal conductivity is also reduced by about the same
percentage. Fisk and Hall®® have pointed out that the measured value of #
may be increased by 50% if the slip correction is included in the
extrapolation of experimental data. It would seem that further investigations,
both theoretical and experimental, are needed to understand this incon-
sistency between theory and experiment.

We have calculated the transport coefficients for all concentrations,
0<x<6.5%, by using a simple scaling law to determine J: d{x)=
(0.16 — 2.5x) A; this scaling law gives the “best fit” values of § at x = 1.3%
and 5%, and enables us to extrapolate those results to other concentrations.
Our results for the thermal conductivity, x; spin diffusion D, and viscosity 7,
as functions of concentration are shown in Figs. 12-14. We note that the
spin diffusion coefficient, D, possesses a maximum at x ~ 4 %, and decreases
with concentration for large x, in agreement with experiment. The thermal
conductivity also shows this behavior. The results of the dilute gas model, in
which the interaction between quasiparticles is described by a single
parameter, a, the s-wave scattering length, are also shown. We note that for
x<0.5%, the dilute gas model yields results comparable with ours. For
larger x it fails to give overall quantitative agreement with experiments. This
result leads us to conclude that for x = 1%, the momentum and concen-
tration dependence of the effective interaction plays a significant role.
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Fig. 12. The thermal conductivity coefficient, x, as a function of concentration x. xT is in
units of [erg/sec cm]. The experimental resulis are from Ref. 4.
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Fig. 13. The spin diffusion coefficient, D, as a function of concentration x. D77 is in units of
[em-(m K)?/sec]. The experimental results are from Ref. 2 (dot), Ref. 7 (circle) and Ref. 30

(triangle).
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Fig. 14. The viscosity coefficient, #, as a function of concentration x.
[P K?|. The experimental results are from Ref. 30.
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4.2, Superfluid Transition Temperature

The normal-superfluid transition temperature, T

., is given by BCS
theory® as

T =1.14 a,T, exp(—1/] g;]) (2.57)

where [ is the angular momentum for the *He Cooper pair, «; is a cutoff
parameter, which takes into account the possible frequency dependence of
the effective interactions, and g; is given by

gzz%glﬁld(cos 9) '(m, §) P/(cos 9) 258)

where [ = O(1) for singlet (triplet) state.

We have calculated 7' using our “best fit” scattering amplitudes. Our
results are shown in Fig. 15; we have taken a,=1, so that our results
represent an upper bound for 7.,. It is interesting to see that for x < 2.5% s-
state pairing is favored, while for x 2 2.5% p-state pairing is preferred. The
magnitude, however, of T is of the order <107 * K, far below the lowest
temperature currently accessible. The maximum 7, occurs at x =0.75%.
The existence of this maximum can be understood as follows: as x increases,
so does the density of states N(0) ~ x'/?; however, *He quasiparticles with
g~ 2g, increasingly sample the less attractive region of the effective
interaction, f ;l (for low concentration, we can nglect f ; T); the combination
of the two effects give the resulting maximum in T,.

In T (p K)

1 L |
0 0.02 0.04 0.06
X

_40 1 I 1

Fig. 15. The calculated normal-superfluid transition temperature, T., of *He quasiparticles
as a function of concentration x.
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4.3. Transport Coefficients at Elevated Pressures

We have calculated the transport coefficients as a function of concen-
tration at pressures of 10 and 20 atm, with the results shown in Figs. 16—19.
In carrying out these calculations we have followed the same procedures as
described above for SVP mixtures, with the following exceptions:

(i) The effective mass as x— 0, m; is obtained from Sherlock and
Edwards,®” while the finite concentration effective mass, m*/m; =1 + 1F%,
is parametrized to give the best spin diffusion result compared with
experiments. We found that the “best” Fj(x) can be parametrized as follows:

Fi(x)=1.5x — 60x? (10 atm)
F5(x) = 7.8x — 63x? (20 atm)

Note that with these values of Fj(x), we find a maximum in the effective
mass as a function of concentration at x = 6 %.

(ii) The behavior of D at x 2 5% (see Figs. 16 and 17) depends on
both Fi{(x) and d(x). Good agreement with experiment can also be achieved
for different values of F; if a slightly different value of 4 is used.

The agreement between theory and experiment for the spin diffusion
coefficient is seen to be excellent. Measurements of k and # at finite pressure
will be of great interest.
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Fig. 16. Comparison of theory and experiment'” for spin diffusion as a function of concen-
tration at 10 atm.
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Fig. 17. Comparison of theory and experiment‘” for spin diffusion as a function of concen-
tration at 20 atm.
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Fig. 18. Theoretical results for thermal conductivity as a function of concentration at 10 and
20 atm.
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Fig. 19. Theoretical results for viscosity as a function of concentration at 10 and 20 atm.

We have also calculated an upper bound for the superfluid transition
temperature for *He quasiparticles in dilute mixtures at pressures of 10 and
20 atm. At both pressures we find the maximum value of T, occurs at
concentrations of ~0.6%; it is 4 x 107° K at 10atm, and 2 X 10" %K at
20 atm. Thus the application of pressure does not significantly improve the
prospects for observing a transition to the superfluid state.

5. DISCUSSION AND CONCLUSION

In determining the concentration and momentum-dependent
pseudopotentials which describe the effective interactions between *He
quasiparticles, and between these quasiparticles and the background *‘He
atoms in dilute mixtures, we have proceeded at two distinct levels. On a
macroscopic level we have combined our physical picture of the long
wavelength quantities, VJ A Vgl, and u,, as spatial averages of configuration
space pseudopotentials, with an ansatz for the macroscopic Fermi liquid
parameter, [ gi, to obtain both a physical understanding and a quantitative
account of the variation of these quantities, and of f (IT, with concentration
and pressure. In this way we have been able to demonstrate the existence of
a hierarchy of physical effects which determine these macroscopic quantities
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in dilute mixtures: interaction-induced short-range correlations, the dominant
physical feature, reduce the spatial average of the bare interaction to that
observed, say, for the effective interaction f%, between *He atoms; when a
*He atom replaces a *He atom, its greater zero point motion gives rise to an
enhanced *He-*He interaction u#,, an enhancement which increases with
concentration, x; this greater zero point motion is responsible as well for the
further enhancement of the effective interaction between antiparallel spin *He
quasiparticles, V(Il; lowest in the hierarchy are the Pauli principle
“statistical” correlations, which enhance VJ T by a factor ~a? compared to
Vil an effect which decreases with increasing concentration. A similar
interplay between zero point motion, the Pauli principle, and the interaction-
induced correlations is responsible for the difference between the direct
effective interaction, VJ L and its counterpart in pure *He, f OT L as well as the
approximate equality of f g T(3He) and VJT in systems at the same density.
Because the Pauli enhancement of ¥} is maximum in the low concentration
limit, we are able to understand why f7 is positive in this limit, decreases
with increasing x, and becomes negative for pure *He.

This same hierarchy of physical effects is responsible for the results we
obtain at the microscopic level for the changes in the momentum dependence
of the effective interactions with concentration and pressure. By making the
ansatz that the short-range part of effective interactions between *He and
*He quasiparticles, and that between *He atoms of antiparallel spin, is iden-
tical to that between “He atoms at the same system density, we have a
unique prescription for u, and V;i; and, since y(g,0) is known from the
work of Aldrich and Pines, for f Jl. We are thus able to reduce the number of
free parameters which determine the *He quasiparticle interactions to a
single free parameter, d, the difference in the range of the repulsive part of
the interaction between parallel spin quasiparticles compared to that of
antiparallel spin quasiparticles. Once 0 is determined by our “best fit”
scattering amplitude calculation of the spin diffusion, there are no free
parameters in the theory.

Our work on dilute mixtures illuminates the choice made by Aldrich
and Pines for the quasiparticle pseudopotentials in pure *He. Because the
bare interaction between He atoms changes sign at a distance (2.68 /i)
comparable to that which characterizes the amplitude of zero point motion
of *He atoms, when one replaces a *He atom by a *He atom in the liquid, its
enhanced zero point motion changes dramatically the nature of the
interaction (from attractive to repulsive) at distances 2.68 <rSr,. The
dependence of r, on concentration and pressure we find in the mixture leads
naturally to the value adopted by Bedell et al.“"® for pure *He at 21 atm
(r.=~2.82 A), and by AP for *He at SVP (r,=3 /gx). Moreover, as one might
expect, spin correlations influence somewhat this zero point enhancement of

822/38/1-2-21
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the range of the repulsive interaction; again, the dependence of 5(= riT—rlY
on concentration and pressure we find for the dilute mixtures leads naturally
to the results found by Bedell and Pines for pure *He. Consistent with their
influence on the spatial average of the pseudopotentials, spin correlations
have a much smaller effect on 7, than does zero point motion.

Our momentum-dependent pseudopotentials, V;l, and u,, are deter-
mined to sufficient accuracy that the resulting effective quasiparticle
interaction, f qu, changes sign for ¢ < p., as BBP argued it must to explain
spin diffusion in dilute mixtures. Our results provide the first physical
explanation for this behavior, as well as a detailed model for its concen-
tration dependence and pressure dependence, and the first calculation of the
bahevior of f ;T as a function of momentum, concentration, and pressure.

We have reported in this paper on two of the three experimental tests of
the accuracy of the pseudopotentials proposed here, and find good agreement
between theory and experiment for both the transport properties and the
maximum superfluid transition temperature as a function of concentration
and pressure. The shift with concentration and temperature of the phonon—
maxon—roton spectrum of dilute mixtures provides a further direct test of u;
as we show elsewhere,!® the excellent agreement between our theoretical
calculations and the neutron scattering measurements of this quantity gives
us considerable confidence in our model for u,,.

Overall we expect that for a given choice of Landau parameters, our
pseudopotentials are accurate to some 10%; improved measurements of the
Landau parameters as a function of concentration and pressure will test the
simple scaling laws we have proposed for these quantities, while careful
measurements of the transport properties should test our predicted maxima
in these quantities at concentrations ~4%. Since at present there is
considerable uncertainty in the experimental determination of the °*He
quasiparticle effective mass as a function of concentration and pressure,*?
and in the role which slip plays in the measured mixture viscosities,*®
further experimental work to resolve these discrepancies would seem highly
desirable.

ACKNOWLEDGMENTS

We should like to thank Kevin Bedell for stimulating discussions on
these and related topics, and the Aspen Center for Physics for its
hospitability during the writing of this paper. We are pleased to acknowledge
the support of NSF Grant Nos. DMR82-15128 and PHY80-25605 for the
research which led to this paper.

To be invited to contribute to a volume which honors a theoretical
physicist of the caliber of Ilya M. Lifshitz is both a privilege and respon-



Effective Interactions in Dilute Mixtures of 3He in 4He 311

sibility. It is a privilege because Ilya Mihaelovitch was one of the great
physicists of our time; a responsibility because his personal standards for
scientific achievement were of the highest. Those among us who had the
opportunity to know him well remember not only his keen intellect,
remarkable physical intuition, and superb taste in choosing a research
problem, but also his quick wit, his personal warmth, and his wonderful
generosity of spirit. Had this been a festschrift, because of Ilya’s continuing
interest in the properties of quantum liquids, we would have hoped that this
contribution would bring him pleasure. We dedicate this paper to his
memory.

REFERENCES

1. D. O. Edwards, D. F. Brewer, P. Seligmann, M. Skertic, and M. Yaqub, Phys. Rev. Leit.
15:773 (1965).
2. A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley,
Phys. Rev. Lett. 17:367 (1966).
3. I. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156:207 (1967).
4. W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmerman, Jr., Phys. Rev. Lett.
18:737 (1967).
5. C. Ebner, Phys. Rev. 185:392 (1969).
6. H. H. Fu and C. J. Pethick, Phys. Rev. B 14:3837 (1976).
7. E. S. Murdock, K. R. Mountfield, and L. R. Corruccini, J. Low Temp. Phys. 31:581
(1978).
8. E. P. Bashkin, Sov. Phys. JETP 46(5):972 (1977).
9. J. R. Owers-Bradley, H. Chocholacs, R. M. Mueller, Ch. Buchal, M. Kubota, and F.
Pobell, Phys. Rev. Lett. 51:2120 (1983).
10. C. H. Aldrich III and D. Pines, J. Low Temp. Phys. 25:677 (1976).
11. C. H. Aldrich III and D. Pines, J. Low Temp. Phys. 32:689 (1978).
12. D. Pines, Excitations and Transport in Quantum Liquids, Proceedings of the Inter-
national School of Physics “Enrico Fermi,” Varenna, Italy, 28 June—16 July 1983.
13. J. M. Rowe, D. L. Price, and G. E. Ostrowski, Phys. Rev. Lett. 31:510 (1973).
14. P. A. Hilton, R. Scherm, and W. G. Stirling, J. Low Temp. Phys. 27:851 (1977).
15. W. Hsu, Ph.D. thesis, University of Illinois, 1984 (unpublished); W. Hsu and D. Pines, in
preparation.
16. D. Pines and P. Noziéres, Theory of Quantum Liquids, Vol. 1 (W. A. Benjamin, Inc.,
New York, 1966).
17. C. H. Aldrich III, Ph.D. thesis, University of Illinois, 1974 (unpublished).
18. K. Bedell, W. Hsu, and D. Pines, in preparation.
19. K. Bedell and D. Pines, Phys. Rev. Lett. 45:39 (1980).
20. A. L Ahonen, M. A. Paalanen, R. C. Richardson, and Y. Takano, J. Low Temp. Phys.
25:733 (1976).
21. L. M. Khalatnikov, Sov. Phys. JETP 28:1014 (1969).
22. L. R. Corruccini, to be published.
23. R. A. Sherlock and D. O. Edwards, Phys. Rev. A 8:2744 (1973).

24, D. S. Greywall, Phys. Rev. B 27:2747 (1983).
25. R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49:177 (1971).
26. W. Hsu, K. Bedell, and D. Pines, in preparation.



312 Hsu and Pines

27. See G. Baym and C. J. Pethick, in The Physics of Liquid and Solid Helium, Part 11, K. H.
Bennemann and J. B. Ketterson, eds. (1978).

28. D. J. Fisk and H. E. Hall, Proc. LT3, Vol. 1, p. 568 (1972).

29. B. R. Patton and A. Zaringhalam, Phys. Lett. 55A:95 (1975).

30. L. R. Corruccini, D. D. Osheroff, D. M. Lee, and R. C. Richardson, J. Low. Temp. Phys.
8:229 (1972).

31. D. Greywall, Phys. Rev. B 20:2643 (1979).

32. H. C. Chocolacs, R. M. Mueller, J. R. Owers-Bradley, Ch. Buchal, M. Kubota, and F.
Pobell, Proc. LT 17, to be published.



